Skip to the content.

🎯 Overview

This research project introduces A Marketplace for Edge Federated ML, addressing critical challenges in building federated machine learning ecosystems where multiple stakeholdersβ€”data providers, model consumers, and service providersβ€”collaborate while preserving data privacy and ensuring transparent quality of training.

🌟 Research Highlights

Our work tackles fundamental problems in federated learning marketplaces:

πŸ—οΈ Core Components

The research encompasses several interconnected systems:

  1. EADRAN Platform: Edge marketplAce for DistRibuted AI/ML traiNing
  2. ASYN2F Framework: ASYNchronous Federated learning Framework with bidirectional aggregation
  3. Data Modification Detection: Mechanisms to identify fraudulent data changes
  4. Cost & Quality Models: Comprehensive evaluation frameworks for federated ML

πŸš€ Key Features

1. Explainable Quality of Training (eQoT)

A novel approach to provide transparency and explainability in federated ML training:

Quality of Data (QoD) Metrics:

Contribution Analysis:

Multi-dimensional Cost Model:

Total_Cost = Cost_QoD + Cost_Context + Cost_Performance + Cost_Resources

where:
  Cost_QoD       = f(data_quantity, data_quality)
  Cost_Context   = f(market_reputation, compatibility)
  Cost_Performance = f(accuracy_improvement, convergence_rate)
  Cost_Resources = f(CPU, GPU, RAM, Storage, Network)

2. Asynchronous Federated Learning (ASYN2F)

Innovative framework addressing heterogeneity in distributed training:

Bidirectional Model Aggregation:

Key Advantages:

Convergence Analysis:

3. Data Modification Detection

Advanced techniques to maintain marketplace integrity:

Detection Mechanisms:

Capabilities:

4. Edge-Cloud Architecture

Scalable and practical implementation design:

Edge Sites:

Cloud Infrastructure:

Communication:


πŸ—οΈ System Architecture

High-Level Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                      Market Consumer (MC)                        β”‚
β”‚                                                                  β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚  Pre-trained β”‚ ──▢  β”‚   Training  β”‚ ──▢  β”‚    Trained    β”‚ β”‚
β”‚  β”‚    Model     β”‚      β”‚   Request   β”‚      β”‚     Model     β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                 β”‚
                        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”
                        β”‚  Orchestrator   β”‚
                        β”‚   & Federated   β”‚
                        β”‚     Server      β”‚
                        β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                 β”‚
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        β”‚                        β”‚                        β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”      β”Œβ”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Edge Node 1   β”‚      β”‚  Edge Node 2   β”‚      β”‚  Edge Node N   β”‚
β”‚                β”‚      β”‚                β”‚      β”‚                β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚      β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚      β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚    Data    β”‚ β”‚      β”‚ β”‚    Data    β”‚ β”‚      β”‚ β”‚    Data    β”‚ β”‚
β”‚ β”‚  Provider  β”‚ β”‚      β”‚ β”‚  Provider  β”‚ β”‚      β”‚ β”‚  Provider  β”‚ β”‚
β”‚ β”‚  (Private  β”‚ β”‚      β”‚ β”‚  (Private  β”‚ β”‚      β”‚ β”‚  (Private  β”‚ β”‚
β”‚ β”‚   Data)    β”‚ β”‚      β”‚ β”‚   Data)    β”‚ β”‚      β”‚ β”‚   Data)    β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚      β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚      β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚                β”‚      β”‚                β”‚      β”‚                β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚      β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚      β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚   Local    β”‚ β”‚      β”‚ β”‚   Local    β”‚ β”‚      β”‚ β”‚   Local    β”‚ β”‚
β”‚ β”‚   Model    β”‚ β”‚      β”‚ β”‚   Model    β”‚ β”‚      β”‚ β”‚   Model    β”‚ β”‚
β”‚ β”‚  Training  β”‚ β”‚      β”‚ β”‚  Training  β”‚ β”‚      β”‚ β”‚  Training  β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚      β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚      β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚                β”‚      β”‚                β”‚      β”‚                β”‚
β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚      β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚      β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚ β”‚ Monitoring β”‚ β”‚      β”‚ β”‚ Monitoring β”‚ β”‚      β”‚ β”‚ Monitoring β”‚ β”‚
β”‚ β”‚   Probe    β”‚ β”‚      β”‚ β”‚   Probe    β”‚ β”‚      β”‚ β”‚   Probe    β”‚ β”‚
β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚      β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚      β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜      β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚                       β”‚                       β”‚
         β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                 β”‚
                        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”
                        β”‚  QoT Analysis   β”‚
                        β”‚    & Cost       β”‚
                        β”‚   Computation   β”‚
                        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                 β”‚
                        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”
                        β”‚  Visualization  β”‚
                        β”‚   Dashboard     β”‚
                        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Components

Marketplace Services

Edge Infrastructure

Communication Layer


πŸ“š Publications

This research has resulted in four peer-reviewed publications covering different aspects of federated ML marketplaces:

πŸ† Published Papers

1. ASYN2F: Asynchronous Federated Learning Framework with Bidirectional Model Aggregation

Authors: Tien-Dung Cao, Nguyen T. Vuong, Thai Q. Le, Hoang V.N. Dao, Tram Truong-Huu
Published: IEEE Transactions on Emerging Topics in Computing (TETC), Vol. 13, No. 4, October-December 2025
DOI: 10.1109/TETC.2025.3609004
Pages: 1618-1632

Key Contributions:

πŸ“„ GitHub Repository: https://github.com/soeai/asyn2f


2. EADRAN: An Edge Marketplace for Federated Learning

Authors: Tien-Dung Cao, Hong-Tri Nguyen, Minh-Tri Nguyen, Tram Truong-Huu, Hong-Linh Truong
Published: Future Generation Computer Systems, Vol. 175, 2026
DOI: 10.1016/j.future.2025.108046
Pages: Article 108046

Key Contributions:

πŸ“„ GitHub Repository: https://github.com/soeai/eadran


3. Detecting Data Modification in Marketplace of Federated Learning

Authors: Tien-Dung Cao, Ngan T.T. Pham, Hoang-Duc Le, Binh T. Nguyen
Published: International Conference on Machine Learning and Cybernetics (ICMLC), Lecture Notes in Networks and Systems, Vol. 1475, 2025
DOI: 10.1007/978-3-031-94892-3_42
Pages: 568-581

Key Contributions:


4. Enabling Awareness of Quality of Training and Costs in Federated Machine Learning Marketplaces

Authors: Tien-Dung Cao, Hong-Linh Truong, Tram Truong-Huu, Minh-Tri Nguyen
Published: 15th IEEE/ACM International Conference on Utility and Cloud Computing (UCC), 2022
DOI: 10.1109/UCC56403.2022.00015
Pages: 41-50

Key Contributions:


πŸ“Š Research Impact

Publication Venues:

Research Coverage:

Technology Stack:


πŸ‘₯ Research Team

Principal Investigator

Tien-Dung Cao, PhD
πŸ“§ dung.cao@ttu.edu.vn
πŸ›οΈ School of Information Technology, Tan Tao University, Vietnam
πŸ”¬ Research Interests: Federated Learning, Edge Computing, Machine Learning Marketplaces, Data Quality, Distributed Systems

Role: Project lead, conceptualization, methodology, implementation, and writing


Collaborators

Prof. Hong-Linh Truong, PhD
πŸ›οΈ Department of Computer Science, Aalto University, Finland
πŸ”¬ Research Interests: Cloud Computing, Service Engineering, Data Engineering
Contribution: Conceptual architecture, marketplace design, cost models

A.Prof. Tram Truong-Huu, PhD πŸ›οΈ Singapore Institute of Technology & Agency for Science, Technology and Research (A*STAR), Singapore
πŸ”¬ Research Interests: Cybersecurity, Federated Learning, Distributed Systems
Contribution: Algorithm design, convergence analysis, security aspects

A.Prof. Binh T. Nguyen, PhD πŸ›οΈ Faculty of Mathematics, University of Science, VNU-HCMC, Vietnam
πŸ”¬ Research Interests: Machine Learning, Computer Vision, and Scientific Computing
Contribution: Statistical analysis, methodology


Graduate Students & Research Assistants

Nguyen T. Vuong
πŸ›οΈ Tan Tao University, Vietnam & Aalto University, Finland (Research Intern)
Contribution: ASYN2F implementation, experiments, analysis

Hong-Tri Nguyen, PhD
πŸ›οΈ Aalto University, Finland
Contribution: EADRAN platform development, integration

Minh-Tri Nguyen, PhD
πŸ›οΈ Aalto University, Finland
Contribution: System implementation, monitoring services

Thai Q. Le
πŸ›οΈ Tan Tao University, Vietnam
Contribution: Software development, testing

Hoang V.N. Dao
πŸ›οΈ Tan Tao University, Vietnam
Contribution: Implementation, experiments

Ngan T.T. Pham
πŸ›οΈ Tan Tao University, Vietnam
Contribution: Data modification detection research

Hoang-Duc Le
πŸ›οΈ Faculty of Mathematics, University of Science, VNU-HCMC, Vietnam
Contribution: Anomaly detection algorithms


πŸ™ Acknowledgments

This research is supported by:

We would like to express our gratitude to all students and staff at Tan Tao University who contributed to the implementation and testing of the platforms.


πŸ“œ License

This research project and associated code are released under the MIT License. See individual repositories for specific licensing details.


πŸ“ž Contact & Collaboration

We welcome collaboration opportunities, questions, and feedback:


Open Source Projects


🌟 Research in Federated Machine Learning Marketplaces 🌟

Advancing Privacy-Preserving, Explainable, and Cost-Transparent Machine Learning


⭐ Star EADRAN β€’ ⭐ Star ASYN2F


Made with ❀️ by the Tan Tao University Research Team and International Collaborators